Allicin, a chemical component of garlic, has strong antioxidant activity and is thought to exert antiaging effects in vitro. We investigated whether allicin treatment would protect porcine oocytes and embryos from postovulatory aging mediated by apoptosis and autophagy. The rates of oocyte survival and polar body extrusion in samples treated with 1 μM allicin (1 AL) were significantly higher than in untreated samples (0 AL). In addition, 1 AL prevented defects in spindle formation and chromosome alignment, as well as decreases in the expression of maturation markers, during in vitro aging. In this study, we considered allicin to be a regulator of autophagy rather than an antioxidant or antiapoptotic agent. At the embryo level, although the cleavage rate after parthenogenetic activation was similar in all groups, the blastocyst formation rate was higher in the 1 AL group than in the 0 AL group. Our findings demonstrate that allicin effectively prevents the deterioration of porcine oocytes during aging in vitro, and could therefore be used to improve the quality of aged oocytes used in in vitro experiments.